KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kam Theory for Quasi-periodic Equilibria in 1d Quasiperiodic Media–ii: Long-range Interactions

We consider Frenkel-Kontorova models corresponding to 1 dimensional quasi-crystal with non-nearest neighbor interactions. We formulate and prove a KAM type theorem which establishes the existence of quasi-periodic solutions. The interactions we consider do not need to be of finite range but do have to decay sufficiently fast with respect to the distance of the position of the atoms. The KAM the...

متن کامل

Equilibrium Quasi-periodic Configurations with Resonant Frequencies in Quasi-periodic Media Ii: Kam Theory

We develop an a-posteriori KAM theory for the equilibrium equations for quasi-periodic solutions in a quasi-periodic Frenkel-Kontorova model when the frequency of the solutions resonates with the frequencies of the substratum. The KAM theory we develop is very different both in the methods and in the conclusions from the more customary KAM theory for Hamiltonian systems or from the KAM theory i...

متن کامل

Survey on dissipative KAM theory including quasi-periodic bifurcation theory

Kolmogorov-Arnol’d-Moser Theory classically was mainly developed for conservative systems, establishing persistence results for quasi-periodic invariant tori in nearly integrable systems. In this survey we focus on dissipative systems, where similar results hold. In non-conservative settings often parameters are needed for the persistence of invariant tori. When considering families of such dyn...

متن کامل

Equilibrium Quasi-periodic Configurations with Resonant Frequencies in Quasi-periodic Media I: Perturbative Expansions

We consider 1-D quasi-periodic Frenkel-Kontorova models (describing, for example, deposition of materials in a quasi-periodic substratum). We study the existence of equilibria whose frequency (i.e. the inverse of the density of deposited material) is resonant with the frequencies of the substratum. We study perturbation theory for small potential. We show that there are perturbative expansions ...

متن کامل

A renormalization operator for 1D maps under quasi-periodic perturbations

This paper concerns with the reducibility loss of (periodic) invariant curves of quasi-periodically forced one dimensional maps and its relationship with the renormalization operator. Let gα be a one-parametric family of one dimensional maps with a cascade of period doubling bifurcations. Between each of these bifurcations, there exists a parameter value αn such that gαn has a superstable perio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2012

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/45/45/455203